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ABOUT  THE  INSTITUTE 
. 



PROFILE 

Established in 1967 as an Institute for 
Fundamental and Applied Research and 

Development in the Field of       
Electrochemistry and Electrochemical  

Power Sources. 

 Scientific & Industrial Background  

• Electric cars (fork-lift) for industrial applications – 1st place   

• Lead/Acid Batteries – 4th in the world 

• First dislocation free single crystal  



•Silver single crystal [100] face 

     
 SIENTIFIC BACKGROUND 

 

• 1936 - two-dimensional theory of            
crystal growth of    Stranski-Kaischew 

 

•   1965 -  the first dislocation free single 
crystal 

 

•   16 months latter – Texas Instruments 
(USA) –    first dislocation free Si crystal 
 



Academic:  
 

 2   Academicians 
 

 6   Professors  
 

 5   Emeritus Professors  
 

 4   Honorable Professors 
 

12 Assoc. Professors 
 

24  Research fellows (15 with Ph. D.)   
 
                                          
  
20  Technical research staff 
      (14 with Masters degree) 
 

12     Ph. D. Students 
 

 
     

PROFILE 
STAFF ~  100 people  

 2 THEMATIC   PLARFORMS: 

BATTERIES + FUEL CELLS 



LITHIUM 
SYSTEMS 

8 SCIENTIFIC DEPARTMENTS    in   2  JOINED THEMATIC PLATFORMS:  

BATTERIES  &  FUEL CELLS AND HYDROGEN 

LEAD-ACID 
BATTERIES 

ELECTRO-
CATALYSIS and 

ELECTROCRYST
ALLIZATION 

NANOSCALED 
MATERIALS 

SOLID STATE 

ELECTRO-
LYTES 

ELECTRO-
CHEMICAL 
METHODS 

HYDROGEN  
SYSTEMS  with 
POLYMER 
ELECTROLYTE 

TECHNICAL  LABORATORIES  AND  GROUPS 

•LABORATORY FOR MATERIALS TESTING •MECHANICAL WORKSHOP •ELECTRIC WORKSHOP 

SEM/ED
X 
Hg-porosimeter 
X-ray diffractometer  

BET surface analyzer 

Thermo/analytical equipment •Administration and Accounting 

•        2015 -  25  Projects and Contracts   (National and  International) 
•                        

+  access to BAS Equipment (about 200 instruments) 



Scientific & business partners :  

(for the last 5 years) 

more than 150 from 

 ~ 30 countries 

 
 
 

   European Comission : FP 3 - 7 (14 projects); NATO; IUPAC; 
 
 
       FP 7 – 5 projects 
   Companies:    ILZRO (TRP – USA); ALABC (USA) & EALABC (Europe), Gould 
(USA), US Army; ChemTek GmbH (D); Fraunhofer (D); Lucas (UK); Oerlicon (Sw); 
Bohemia (Cz), ENEL…… Segasa (Sp); Varta (D),  
 
   Academic: CNRS (Fr); Royal Society (UK); CNR (It); JRC- Petten;  Polish, Rumanian 
Academies of   Sciences;  Many Universities (Greece, UK, Germany); ERASMUS 
 

   2003 -                                         on Portable and Emergency Energy Sources 



BATTERIES 

FUEL CELLS & HYDROGEN 
              90ths of  the 20th century 
 

JOINT THEMATIC PLATFORMS 

Scientific Strategy: “TRADITION AND INNOVATIONS” 



 lead-acid batteries  

 

 

• International research support -  

contracts with the largest  

international companies 

•  LABAT 

• Optimization for RES and electric cars 
NEW TRENDS 

 

  BATTERIES 



 

  Metal (Zn, Mg)/air batteries (3 generations)  

sea signalization 

buoys (Baltic sea) 

Bulgarian  Himalayan  expeditions 

World record  

Salt Lake (USA) - 1997 

• primary  

• mechanically rechargeable 

• Rechargeable – recently 

 

  BATTERIES 



   Li and Li-ion batteries (4th country in the world in production of  primary Li-SO2) 

 
 

    Ni-Zn rechargeable – project with Bohemia  

   Electrochemical methods for batteries and fuel cells testing -     

      diagnostic of  batteries r accumulation from RES (> 500 V) – project  

      with ENEL 

 

 

 

 

•  new designs (Li/air) 

•  nano- nano-scaled composites (metal-carbon, silicon-carbon) 

  BATTERIES 

ZAS Kick-off Meeting; 17/18 June 2015, Trondheim 



  fuel cells – PEM, SOFC 

  hydrogen production 

  hydrogen storage 

  electrochemical methods for fuel cells 
testing   (impedance spectroscopy) 

     

4 FP 7 contracts:  

1 in FCH JU 

 1 in Energy;  

 2 in Marie Currie 

 Fuel Cells & Hydrogen  – 90ths of  the 20th century 

                                              Renewable Energy Sources (Energy Efficiency) - NOW 

       



  Electrochemical methods for batteries and fuel cells  testing (impedance 
spectroscopy) 

 

 

 

 

 

 

• Non-standard equipment 

• Innovative electrochemical methods  for characterization and testing  of  functional 
materials 

o Nonstationary impedance  ( Mitsubishi (Li-batteries),  

o Differential Impedance Analysis (data analysis without preliminary working       
    hypothesis) 

  - 
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  Electrochemical methods for batteries and fuel cells  testing (impedance 
spectroscopy) 

 

 

 

 

 

 

• Innovative electrochemical methods  for characterization and testing  of  functional 
materials 

o  Differential Coulometry Spectroscopy – for precise characterization and testing of  
batteries 

   
 



  Electrochemical methods for batteries and fuel cells  testing (impedance 
spectroscopy) 

 

 

• Innovative electrochemical methods  for characterization and testing  of  functional 
materials 

o  Capacitive Impedance Spectroscopy 
  - 

 
 

Water in p-conducting ceramic 

Last years: 

•  Impedance based approaches for 

 characterization and testing of  fuel cells 



0.1 A  C/D 
16 channels 

Star 1 

1 

5 A  Dch 

16 channels 

Star 2 

2 

100/200 A  C/D 

Single  

channel 

Star 3 

3 

0.1 A/0.01 A; 5 V  5A ; 2V   1000A; 12/6V   200A; 24V  

 Testing Units  (can be used for impedance) 

1000 A 
12 V 

Single  
Channel 

Star 6 

6 



1. Why Impedance 

2. What is impedance 

3. Impedance measurements 

 

4. Presentation of  the experimental data 

5. Interpretation of  the measured data (data analysis) 

 

 

•   Basic Working Hypotheses 
 
 
 
 
•   Impedance elements 
•   Simple models 
•   Identification 

BASICS OF IMPEDANCE SPECTROSCOPY – e-learning 



1. Why Impedance 

2. What is impedance 

3. Impedance measurements 

 

4. Presentation of  the experimental data 

5. Interpretation of  the measured data (data analysis) 

 

 

•   Basic Working Hypotheses 
 
 
 
 
•   Impedance elements 
•   Simple models 
•   Identification 

BASICS OF IMPEDANCE SPECTROSCOPY – e-learning 



  

•  UNIQUE ADVANTAGE: to 
separate the kinetics of  the 
different steps involved in the 
total process under investigation 

•  Assessment of   processes with 
different velocity  

•  Easy performance of  
experiments with accessible 
digital instruments 

•  Maturity in the software 
exploitation 

•  Easy performance of   virtual 
impedance data analysis (e-data 
analysis) 

  From scientific point of  view: 
  From applied point of  view: 

Covers wide range of  objects: 
• Batteries    

Semiconductors 
• Fuel cells    
• Nano-materials 
• Biosensors    
• Ceramics 
• Biological objects   

Materials testing 
• Corrosion    

Crystallization 

Why Impedance - Advantages 



Internat. Mycrosymp  
on EIA  

(every 3 years) 
   

Ist   -  1987 -          RUSSIA 
 
IInd  - 1990 -         BULGARIA 
 
IIIrd  - 1993  -        BULGARIA 
 
IVth  - 1996 -          POLAND 
 
Vth  -  1999  -         HUNGARY 
 
VIth -  2002  -         CZECHIA 
    
VIIth  - 2006-         CZECHIA 
 
VIIIth - 2008 -        CHECHIA 
 
IXth   - 2011 -         CROATIA 
 
Xth    - 2014 -         BULGARIA 
  
Xith   -  2017 -        ITALY 

Internat. Symp. on EIS  
(every 3 years) 

 
Ist    -  1989  -     FRANCE 
 
IInd  -  1992  -     USA 
 
IIIrd  - 1995  -     BELGIUM 
 
IVth  -  1998 -     BRAZIL 
 
Vth   -   2001 -     ITALY 
 
VIth  -  2004 -      USA  
 
VIIth  - 2007 -     FRANCE 
 
VIIIth – 2010 -    PORTUGAL 
 
IXth    - 2013    -  JAPAN 

2001  Established 
 

European Internet 
Centre 

For Impedance 
Spectroscopy (EICIS) 

 

base organization 
 

IEES - BAS 
 
 

Online Journal 
Impedance 

Contributions Online 
 

Online consultations 



1. Why Impedance 

2. What is impedance 

3. Impedance measurements 

 

4. Presentation of  the experimental data 

5. Interpretation of  the measured data (data 
analysis) 

 

 

•   Basic Working Hypotheses 
 
 
 
 
•   Impedance elements 
•   Simple models 
•   Identification 

OUTLINES 



Linear System 

  The Electrochemical Impedance Spectroscopy is based on 
the classical method of  the TRANSFER FUNCTION (TF) 



Linear System 
 Sinwave input 
x( iω) = A sin ωt  

  The Electrochemical Impedance Spectroscopy is based on 
the classical method of  the TRANSFER FUNCTION (TF) 

Principle: 
 If   the system under investigation is LINEAR (LS), 

sin-wave input x(iω) perturbation              y( iω) output measurement  

The response y( iω) is also sin wave with the same frequency and different 
amplitude and phase; 

 The ratio output / input signal  determines the complex transfer coefficient for the 
corresponding  frequency: 

          k( iω)  = y( iω) / x( iω)  Complex number (Re; Im) 
Depends on  ω  and the object’s properties 



Linear System 
 Sinwave input 
x( iω) = A sin ωt  

  Sinwave output 
y( iω) = B sin (tω + f) 

  The Electrochemical Impedance Spectroscopy is based on 
the classical method of  the TRANSFER FUNCTION (TF) 

Principle: 
 If   the system under investigation is LINEAR (LS), 

sin-wave input x(iω) perturbation              y( iω) output measurement  

The response y( iω) is also sin wave with the same frequency and different 
amplitude and phase; 

 The ratio output / input signal  determines the complex transfer coefficient for the 
corresponding  frequency: 

          k( iω)  = y( iω) / x( iω)  Complex number (Re; Im) 
Depends on  ω  and the object’s properties 



Linear System 



Linear System 

                                          H(iωi) = Y (iωi) / X (iωi)  

                                             is the Transfer Function   

     TF describes the frequency dependence of  the transfer coefficient k(ωi)  

 

 The transfer from the time-domain to the frequency domain is performed by 
LAPLAS transform. For steady state linear systems it is replaced by FOURIER 
transform. 

X (iωi) = Sinwave input signals  
              (ω1- ωn)  



Linear System 

                                          H(iωi) = Y (iωi) / X (iωi)  

                                             is the Transfer Function   

     TF describes the frequency dependence of  the transfer coefficient k(ωi)  

 

 The transfer from the time-domain to the frequency domain is performed by 
LAPLAS transform. For steady state linear systems it is replaced by FOURIER 
transform. 

X (iωi) = Sinwave input signals  
              (ω1- ωn)  

Y (iωi) = Sinwave output signals  
              (ω1 - ωn)  



 

 TF  is impedance            H(iωi) = Z (iωi)  

 input signal  - current (I)  

      output signal - voltage (U)    

 TF  is admittance              H(iwi) = Y (iωi)  = Z-1 (iωi)  

  input signal - voltage (U)  

       output signal is current (I) 

  When the frequency range (ω1-ϖ n) isω large and covers all the properties of  the system , 
the system is observable, otherwise it is partially observable.  

 

 

Conclusion:  
The Transfer Function H(iwi) describes totally a linear, steady-state and 
observable system. 



1. Why Impedance 

2. What is impedance 

3. Impedance measurements 

 

4. Presentation of  the experimental data 

5. Interpretation of  the measured data (data 
analysis) 

 

 

•   Basic Working Hypotheses 
 
 
 
 
•   Impedance elements 
•   Simple models 
•   Identification 



 

The TF approach needs a number of  simplifications and 
assumptions, generalized in  

 
BASIC WORKING HYPOTHESES 

 

 large  
 non-linear 
 non-steady state 
 semi-irreversible  
 distributed parameters  
 mass- and energy transfer take place 

 

 Electrochemical systems: 

Impedance as a Transfer Function H(iwi) describes totally a 
linear, steady-state and observable system. 

SOFC are quasi-linear 
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 Linearity: the input perturbation signal should be small enough  to 
keep the state of  the investigated system unchanged.  
The requirement for a small signal covers the potential, the current, as 
well as the quantity of  electricity for half  a period (very important at 
low frequencies!).  

  Experimental verification: Consecutive impedance measurements in 
the full frequency range with decreasing amplitude and analysis of  
the weighted differences. 

 Working hypotheses from system analysis point of  view 

YSZ electrolyte    DC = 0 mV;  
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 Small signal :  depends on the investigated system 
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YIG single crystal DC = 0 mV;  Composite LSM/YSZ 
DC = 0 mV;   AC = 50 mV 

Dislocation free Ag single  crystal    
DC = 5 mV;    
AC = 50 mV 

 Working hypotheses from system analysis point of  view 

 Linearity:    the input perturbation signal should be small 
enough  to keep the state of  the investigated system unchanged.  
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AC = 500 mV 
AC = 200 mV 

   IEES  

 
AC = 50 mV 

AC = 200 mV 
AC = 50 mV 

LSCF/YDC/LSCF 
DC = 0 mV    

AC = 50 mV AC = 20 mA 
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 Small signal :  depends on the investigated system 



   Single input, single output:  
achieved if  the rest of  the parameters (temperature, 
concentration, d.c. signal, pH etc.) are kept constant by 
passive or active conditioning. 
 

 Working hypotheses from system analysis point of  view 
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   Observability:  
All the phenomena under study can be observed in the measured 
frequency range. 

 Working hypotheses from system analysis point of  view 
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   Observability:  
All the phenomena under study can be observed in the measured 
frequency range. 

 Working hypotheses from system analysis point of  view 
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  Observability:  
All the phenomena under study can be observed in the measured 
frequency range. 

 Working hypotheses from system analysis point of  view 
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  Observability:  
All the phenomena under study can be observed in the measured 
frequency range. 

 Working hypotheses from system analysis point of  view 
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  Lack of  memory effects:  
the investigated system dos not “remember” the history of  
the experiment. That means that the result does not depend 
on the order of  the measurements. 

 Experimental verification: measurements  from 
high to low and then from low to high frequencies, 
+  analysis of  the weighted differences. 
 Recommendation:  down-scanning 
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  For Systems that:  

 OBEY the working hypotheses  
 CAUSAL  (all the changes  are caused by the perturbation 
signal) 
 Hilbert Transform:  

            full description of  the object with only with Re (or Im) 
        Experimental application: Kramers-Kronig Transform (KK) 

Im → Re      or      Im → Re  
 

KK is valid ONLY for a class of  electrochemical objects 
 



  Additiveness of  the Faradaic current and the charging 
current of  the double layer 
 
  Electrical neutrality of  the electrolyte – the total density 
of  the charges in every point of  the solution is zero 
 
 Lack of  convection and migration – i.e. there are no 
changes in the local concentration of  the electrolyte 
 
  Lack of  lateral mass and charge fluxes  at the electrode 
surface. 

 Working hypotheses from electrochemical point of  view 



 
 AIM:  To overcome the restrictions of  the working hypotheses: 

 

 New Trends in the Electrochemical Impedance  

☺  NON -LINEAR Impedance 
 

☺  NON-STATIONARY Impedance 
 

☺  MULTI-TRANSFER FUNCTION ANALYSIS –  
    single input and multiple outputs 

 



 

 ONLY correct  experimental conditions ensure  

 

 

 Correct  experimental conditions depend on: 

                  

 Working hypotheses - Conclusions  

☺ accuracy 
☺ reliability of  the measured impedance data 

 
 
☺ construction of  the experimental cell + object configuration 
☺ measurement setup 
☺ correct combination of  parameters and conditions (small 
signal, scan from high to low  frequencies, well defined 
working point – constant values of  all the parameters) 

 

 Basic Working Hypotheses 



1. Why Impedance 

2. What is impedance 

3. Impedance measurements 

 

4. Presentation of  the experimental data 

5. Interpretation of  the measured data (data 
analysis) 

 

 

•   Basic Working Hypotheses 
 
 
 
 
•   Impedance elements 
•   Simple models 
•   Identification 



 Coordinates:    xi  = Re;  yi = - Im 
 

 Nd – frequency density;  3-5 for 
screening; 10-15 for precise 
measurements; 
 

Data pre-processing: data quality 
improvement - correction of   
erroneous data 

  Impedance monitoring  
                       complex number 
Z (iωi) = Y (iωi) / X (iωi) = U (iωi) / I (iωi)   
         3D data set  Z(Rei, Im i, ωi) 

  Cartesian coordinates: 

Z (iωi) = Rei + iIm i;           i = (-1)1/2;       i  = 1, 2 ,….n – frequency range 

     Complex plane (Nyquist) plot 
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  Coordinates:     
 
xi  = lg ωi;     y1i = ZI                                                                        
                        y2i = φ i  
 

                                                  
Z= (Rei

2 + Im i
2)1/2   -  modulus   ;     φ i = Arc tan (Im i/Rei)   -  phase  

  Recalculated 3D  set of  data: 
 

   D3  [ ωi, Zi, φ i ] ;       i = 1, 2, ..n 

  Polar coordinates:   Z (iωi)  =Z ije ϕ
-   Bode Plots 

Bode Plots 

 Presentation of  the experimental data 



1. Why Impedance 

2. What is impedance 

3. Impedance measurements 

 

4. Presentation of  the experimental data 

5. Interpretation of  the measured data (data 
analysis) 

 

 

•   Basic Working Hypotheses 
 
 
 
 
•   Impedance elements 
•   Simple models 
•   Identification 



From one side the impedance (or admittance) functions contain all the 
information for the investigated system (if  the working hypotheses are 
fulfilled at the selected working point). 
From another side  this information has to be extracted from the data, 
i.e. the data analysis  is an identification procedure. 
Advantage: The electrochemical impedance has the unique possibility 
to separate the kinetics of  the different steps involved in the total 
process under investigation, because as a transfer function it is a local, 
linear an full description of  the system under study. A number of  
processes are taking place, caused by the perturbation signal. The 
impedance, however,  does not measure them, i.e. it is not a physical 
reality, but information property of  the object. 
Disadvantage:  Since impedance is not a physical reality, the 
interpretation of  the experimental data is based on the construction of  
a WORKING MODEL, following a preliminary working hypothesis, 
which should be identified. This introduces a subjective component in 
the analysis. 



  Theoretical (classical) identification approach 
 
 
 
 
  Structural identification approach  

Impedance (as a Transfer Function) gives a local, linear an full description 
of  the system under study.  

  Data analysis – construction of  a model by identification procedure. 
 

• construction of  a working model(s), following a preliminary     
working hypothesis  

•  verification of  the model by parametric identification  
 
  
• no need of  a preliminary working hypothesis 
•  extracts the model structure + parameters from the experimental 

data (DIA) 
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  Model representation by equivalent circuits  -   construction of   
different elements connected under given laws 

  The electrical circuit has a response identical to that obtained from 
the measurement of  the investigated system. 
 
  Every element describes part of  the physical processes taking place 

 
  If  the model is not formal, the values of  its elements could give a 
significant contribution to the physical understanding of  the 
investigated system. 
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1. Why Impedance 

2. What is impedance 

3. Impedance measurements 

 

4. Presentation of  the experimental data 

5. Interpretation of  the measured data (data 
analysis) 

 

 

•   Basic Working Hypotheses 
 
 
 
 
•   Impedance elements 
•   Simple models 
•   Identification 



  Lumped (electrical) elements – describe homogeneous systems 
(electrical elements) 
 
 
 
 
 
 
 
   Frequency dependent (electochemical) elements – describe  
frequency inhomogeneity (electrochemical processes) 

  resistance R;  
 
capacitance C;  
 
 inductance L.   



  Resistance R  
 
 
 
 

 In the time (t) domain – follows Ohm’s Law:  UR=R.I 
                                          Dimensions: ohm (Ω) = VA-1

 = m2kgA-2s-3 
 

  In the frequency (w) domain:  ZR (iω) = R    
                                                    only real part  (Re = R; Im  = 0) 
  

   Physical meaning: - description of: 
 
 
 
 
 
  Electrolyte resistance - Zs(iω) = Rs   
   for water based electrolytes 

 energy losses;   
 dissipation of  energy;  
 potential barrier;  
 electronic conductivity 
 conductivity of  very fast carriers 0 100 200 300 400
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   Capacitance C 
 
 
 
 

  In the time (t) domain  
    Dimensions: F  =  sΩ-1 
 

  In the frequency (ω) domain:     
  only imaginary  part  (Re = 0) 
  90o phase retardation; Z ↓;ω↑ 

  Physical meaning: - modeling 
of: 
 
 
 
 
 The impedance of  the Double 
layer Cdl  has  a capacitive 
character. 

 mass and charge accumulation, 
 dielectric polarization,   
 integral relation between     
parameters 
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  In the time (t) domain  
       Dimensions: H  =  Ωs 
 
  In the frequency (ω) domain:     
      only imaginary  part  (Re = 0) 
 90o phase shift; Z ↑; ω↑ 
  

L)(iZL ωi=ω

dt
tdiLU L
)(

=

L 1 = 1E-4 
L 2 = 1E-3 

  Physical meaning: - modeling 
of: 
 

 
 
 
 
  Represents accumulation of   
    magnetic energy 

 self  inductance of  the connecting 
cables, the measuring cell and 
investigated objects  
 self  inductance of  current flow or 
of  charge carriers movement; 
 



 
 
  Frequency dependent (electochemical) elements – describe  
    frequency  dependent behaviour 

 Impedance elements  



 Warburg element (1896 )W - describes  linear semi-infinite  
diffusion,  which obeys the second Fick’s low: 

 Frequency dependent  elements  

  In the time (t) domain  
       Dimensions: Ωm2s1/2 

 
   In the frequency (ω) 

domain: 
      Re = Im – phase shift = 45o 

  
  Remark:  
 

)/(/ 22 xcDtc ∂∂=∂∂
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 the sin wave does not reach the end of  
the diffusion layer.  
 
 Warburg impedance is a one port 
element – no introduction of  another 
element after Warburg impedance 
 



   Constant Phase Element (CPE) – empirical relationship 

  CPE describes frequency dependent impedance 
caused by surface roughness or non-uniformly 
distributed properties of  the irregular electrode 
surface. 

 n1
CPE )(iA)(iZ −− ω=ω

A – proportional factor [Ωm-2sn]; 
 
n – exponential coefficient (CPE exponent) 
that describes the phase shift 
 

 Frequency dependent  elements  



0 20 40
0

20

-Im
 / 

Ω

Re / Ω

n = 0.45 
n = 0.2 
n = 0.8 
n = 0.9 

CPE 

 CPE is a generalized element  
 

n =  0.5  ±  e  ( 0 < e < 0.2) - diffusion with 
deviations from the second Fick’s law; 

 n =  0   ±  e  -  distorted resistance 
     ( n <  0 is related to inductive energy 

accumulation); 
 n = 1 – e     -  distorted capacitance; 
 n = -1 + e     - distorted inductance. 

For integer values of  n  ( n = 1, 0, -1) – 
lumped elements C, R and L.  

 

  Constant Phase Element (CPE) – empirical relationship 

  In general CPE is semi-infinite element. It models the 
impedance of  a layer with a thickness bigger than the 
penetration depth of  the perturbation signal.  
 
 CPE has only an input with the exception in the cases 
when n = 1, 0, -1. 

 Frequency dependent  elements  
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 n =  0   ±  e  -  distorted resistance 
     ( n <  0 is related to inductive energy 

accumulation); 
 n = 1 – e     -  distorted capacitance; 
 n = -1 + e     - distorted inductance. 

For integer values of  n  ( n = 1, 0, -1) – 
lumped elements C, R and L.  
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  In general CPE is semi-infinite element. It models the 
impedance of  a layer with a thickness bigger than the 
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 CPE is a generalized element  
 

n =  0.5  ±  e  ( 0 < e < 0.2) - diffusion with 
deviations from the second Fick’s law; 

 n =  0   ±  e  -  distorted resistance 
     ( n <  0 is related to inductive energy 

accumulation); 
 n = 1 – e     -  distorted capacitance; 
 n = -1 + e     - distorted inductance. 

For integer values of  n  ( n = 1, 0, -1) – 
lumped elements C, R and L.  

 

  Constant Phase Element (CPE) – empirical relationship 

  In general CPE is semi-infinite element. It models the 
impedance of  a layer with a thickness bigger than the 
penetration depth of  the perturbation signal.  
 
 CPE has only an input with the exception in the cases 
when n = 1, 0, -1. 

 Frequency dependent  elements  



0 20 40
0

20

-Im
 / 

Ω

Re / Ω

n = 0.45 
n = 0.2 
n = 0.8 
n = 0.9 

CPE 

0 20 40
0

20

-Im
 / 

Ω

Re / Ω
0 20 40

0

20

-Im
 / 

Ω

Re / Ω
0 20 40

0

20

-Im
 / 

Ω

Re / Ω

 CPE is a generalized element  
 

n =  0.5  ±  e  ( 0 < e < 0.2) - diffusion with 
deviations from the second Fick’s law; 

 n =  0   ±  e  -  distorted resistance 
     ( n <  0 is related to inductive energy 

accumulation); 
 n = 1 – e     -  distorted capacitance; 
 n = -1 + e     - distorted inductance. 

For integer values of  n  ( n = 1, 0, -1) – 
lumped elements C, R and L.  

 

  Constant Phase Element (CPE) – empirical relationship 

  In general CPE is semi-infinite element. It models the 
impedance of  a layer with a thickness bigger than the 
penetration depth of  the perturbation signal.  
 
 CPE has only an input with the exception in the cases 
when n = 1, 0, -1. 

 Frequency dependent  elements  



 
CPE may have direct physical meaning : 
 
 the generalized resistance n =  0 - 0.2 may model conductance of  ionic 

clouds or conductance connected with accumulation of  magnetic or 
electrostatic energy;  

 the generalized capacitance n = 0.8 - 1  may model surface roughness of  the 
electrode or distribution of  the charge carrier density, i.e. a double layer 
with complicated stricture; 

The generalized Warburg n = 0.4 - 0.6 may present non-ideal geometry of  
the diffusion layer; presence of  migration or convection; diffusion 
connected with energy loses or accumulation of  charges; constrains of  
the host matrix to the diffusion of  species,unhomogeneous diffusion; 

 
CPE may be also used for formal better  modeling of  an external similarity 

with the measured impedance.  

 CPE- Physical Meaning  



In real  systems very often at low frequencies the 
perturbation signal penetrates to the end of  the 
layer, which behaves as a layer with a finite 
thickness. For more precise modeling of  such 
systems bounded electrochemical elements are 
introduced.  

 Bounded electrochemical elements  

 Frequency dependent  elements  
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  Bounded Warburg (BW)   

  Bounded Warburg element  
   describes the impedance of  a 
linear diffusion in a homogeneous 
layer with finite thickness 
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R0 is the total resistance [Ω] of  the 
layer at ω= 0 

At high frequencies   (            )   BW 
behaves as Warburg element.             

∞→ω
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 Frequency dependent  elements  



 Bounded Constant Phase Element (BCP)  - represents the 
impedance of  a bounded homogeneous layer with CPE behaviour of  
the conductivity in the elementary volume and a finite conductivity R0 
at d.c. (            ) 
    
                                                        n and A are the CPE coefficients   

0→ω ))A(ith(R)(iA)(iZ n
0

n1
BCP ωω=ω −−

  Properties – the most generalized element: 
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  for high enough frequencies  
   tends to the classical CPE 
 
 
 for low frequencies – pure  
  resistance R0 
 
 
 
 

εωω +=≥  Z)(Z CPEBCP a

εωω +=≤  R)(Z
0bBCP

 Frequency dependent  elements  



 
 a and b are the angles of  the 
diagram’s asymptotes 
respectively at low and high 
frequencies. 

 

Criterion for verification of  BCP: 
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 Frequency dependent  elements  



 Bounded Constant Phase Element (BCP) 
 
 
 
     n and A are the CPE coefficients.   
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  Remark: 
 BCP can be applied for n = 0 – 0.6  
because of  the initial assumption that 
the investigated object is regarded as a 
conductor. 
 
Obviously at higher values for n the 
system demonstrates capacitive 
behaviour. 

 Frequency dependent  elements  



 

 Lumped (electrical) elements  
 
  R                ZR(iw) = R              energy  losses 
 

  L               ZL(iw) =  iwL           accumulation of  magnetic energy 
 

  C               ZC(iw) =  -i(wC)-1     accumulation of  mass or charge 
 
  Frequency dependent (electrochemical) 
 

      W              ZW       semi-infinite diffusion 

  BW              ZBW       bounded diffusion 
 CPE       ZCPE       generalized, semi-infinite 
 BCP       ZBCP        most generalized, bounded 
  
  

Electrical circuit  model – construction of  different elements connected 
under given lows 

 Impedance elements - Summary  



1. Why Impedance 

2. What is impedance 

3. Impedance measurements 

 

4. Presentation of  the experimental data 

5. Interpretation of  the measured data (data 
analysis) 

 

 

•   Basic Working Hypotheses 
 
 
 
 
•   Impedance elements 
•   Simple models 
•   Identification 



 Simple models 

  Connections between elements: 

R C 
Parallel 
connection: 

1/Z (i ω ) =1/ZR(iω) +1/ ZC(iω) 

CDL 

R E
 

Series 
connection 

ZIP (iω) = ZR(iω ) + ZC(iω) 

R + C 

ZC (iω) =  -i( ωC)-1  ZR(iω) = R 



  Connections between elements: 

CDL 

R E
 

Series 
connection 

Z (iω ) = ZR (iω ) + ZC (iω ) =  
 
= R + (iωC)-1 = R - i(ωC)-1 
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 Simple models 



  Connections between elements: 

Parallel 
connection: 

R C 

=
)ωi(Z

1
)ωi(ZR
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1
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1Hz

1/Z (iω ) =1/ ZR(iω) +1/ZC(iω) 

T = R.C 



  Connections between elements: 

Parallel 
connection: 

R C 

Z (iω)  =    + i  
221 T
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ω

ω
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1/Z (iω ) =1/ ZR(iω) +1/ZC(iω) 

T = R.C 



 Ladder  Structure – consists of  a number of  kernels corresponding to 
the modelled phenomena. The modeled phenomena occur 
consequently. 

 

 The model has typical “ladder” 
structure 
 
 Application for description of  
processes at the electrode interface 

Main model structures: 

C1 

C2 

R2 

R1 

Z(iω) = Z1(iω) + {Z2(iω) + [Z3(iω) + Z4(iω) + …)-1]-1}-1 



 Voigt’s Structure – consists of  meshes with impedances Zk 
(iω), connected in series. 

 )i(Z)i(Z k ωω ∑=

 The phenomena modeled by each 
mesh start instantaneously.  
The flowing current is equal for all 
meshes.  
The rates depend on their own time-
constants. 

  

Voigt’s model structure is applied for  impedance description of  solid 
state samples 
 

R1 

C1 

R2 

C2 

Main model structures: 



  Main model structures:  Voigt’s model structure 
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  Model description conventions 
 

C1 
C2 

R2 

R1 

R1 

C1 

R2 

C2 

 Structures: 
              La: - ladder; Vo: - Voigt 
 
  Elements: R, C,  L,  W,  BW, CPE, BCP 
 
  Connections: “ “ in series; “/” in parallel 
 
  Parameters: dimensions in SI ; delimiters  

“;”; multiple parameters separator – “\” 
 

 

Vo: 

La: 

Example: M = La: R_CPE/R;  par: 100; 10-3\0.8; 200 
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   Ideally polarizable electrode (IPE)   La: Rs Cdl 

 
describes a case when there is 

absence of  any process at the 
electrode surface 

 
 Structure (equivalent circuit) 
 
 
Impedance  

ZIPE (iω) = Rs – i( ωCdl)-1 
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   Ideally polarizable electrode (IPE)   La: Rs Cdl 

 
describes a case when there is 
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electrode surface 
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   Ideally polarizable electrode (IPE)   La: Rs Cdl 

 
describes a case when there is 

absence of  any process at the 
electrode surface 

 
 Structure (equivalent circuit) 
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  Modified Ideally polarizable electrode (MIPE) La: Rs CPEdl 

describes a case when  the 
electrode surface is rough 
and inhomogeneous 

 
 Structure (equivalent circuit) 
 
 
Impedance  
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  Modified Ideally polarizable electrode (MIPE) La: Rs CPEdl 

describes a case when  the 
electrode surface is rough 
and inhomogeneous 

 
 Structure (equivalent circuit) 
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 Polarizable electrode (PE) (simple Faradaic reaction) La: Rs  Cdl/Rct 

 
Describes a single step 

electrochemical reaction at the 
electrode surface 

Additiveness of  the Faradaic 
current and the charging 
current of  the double layer 

Structure (equivalent circuit)- 
physical meaning 

 Impedance  CDL 

RS 

ZF Rct 

 ZPE(iω) = Rs + Rct(1 + ω2T2 )-1 –iω RctT (1 +ω2T2 )-1  

(T = RC) 
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R ct = 300 
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 Polarizable electrode (PE) (simple Faradaic reaction) La: Rs  Cdl/Rct 

 
Describes a single step 

electrochemical reaction at the 
electrode surface 

Additiveness of  the Faradaic 
current and the charging 
current of  the double layer 

Structure (equivalent circuit)- 
physical meaning 
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 Polarizable electrode (PE) (simple Faradaic reaction) La: Rs  Cdl/Rct 

 
Describes a single step 

electrochemical reaction at the 
electrode surface 

Additiveness of  the Faradaic 
current and the charging 
current of  the double layer 

Structure (equivalent circuit)- 
physical meaning 

 Impedance  CDL 

RS 

ZF Rct 

 ZPE(iω) = Rs + Rct(1 + ω2T2 )-1 –iω RctT (1 +ω2T2 )-1  

(T = RC) 
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Impedance diagram in the 
 frequency range 105-10 Hz 

 
Geometrically the impedance diagram is 

presented as an ideal semicircle with a 
diameter Rct; 

 for                     the semi-circle intercepts the 
real axis  in Rs 

 for                   the intercept is in a point with 
value Rs + Rct 

 the imaginary component reaches a 
maximum at the so called characteristic 
frequency ω0  

∞→ω

0→ω

ω0  = (CdlRct) –1 = T-1   (T is the time-constant) 
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 frequency range 105-10 Hz 

The structural parameters have direct physical 
meaning (Rs, Rct,Cdl) 

 for partially reversible charge transfer reaction 
at equilibrium 

 

 Rct = (RT/nF)(1/I0)     (I0 -  exchange 
current) 

 

 Rct depends on the rate of  reaction, which is 
potential dependent and thus Rct varies with 
the potential, i.e.the diameter of  the semi-
circle changes. 

 ZPE(iω) = Rs + Rct(1 + ω2T2 )-1 –iω RctT (1 +ω2T2 )-1  



   Modified Polarizable electrode (MPE) La: Rs CPEdl/Rct  
 

May give better Structure, but 
formal description of  the 
investigated system  

May have a physical meaning: 
description of  the electrode’s 
surface roughness 
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   Modified Polarizable electrode (MPE) La: Rs CPEdl/Rct  
 

May give better Structure, but 
formal description of  the 
investigated system  

May have a physical meaning: 
description of  the electrode’s 
surface roughness 
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 Faradaic reaction with one adsorbed species La: R1 C1/R2 C2/R3 
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 Structure (equivalent circuit)  

 

 

 

 
 describes a heterogeneous 

reaction occurring in two steps 
with adsorption of  the 
intermediate product X   

 
          B                X + e    step I 
 
          X                P + e   step II 
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 Faradaic reaction with one adsorbed species La: R1 C1/R2 C2/R3 
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 Faradaic reaction with one adsorbed species La: R1 C1/R2 C2/R3 
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 Faradaic reaction with one adsorbed species La: R1 C1/R2 C2/R3 
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The structural parameters have 
direct physical meaning:  

 

     R1 = RS C1 = CDL 

     R2 = Rct  C2 = Cad 
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Describes  polarizable electrode 
with diffusion limitations 

Structure (equivalent circuit)  

 

 

 
 

 Impedance 
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with diffusion limitations 

Structure (equivalent circuit)  
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Relation between the structural parameter σ and the electrochemical 
parameters: 

 
                   W = Rct[kf(DO)-1/2 + kb (DR)-1/2] 
     (kf, kb – reaction rates of  the “forward”and “backward” reactions; DO 

and DR – diffusion coefficients of  the species) 
 
 The structural model has 4 parameters, which can be determined from 

the impedance (RS, Rct, Cdl, W), while the electrochemical impedance 
model has 7 parameters (RS, Cdl, I0, kf, kb, DR, DO), which can not be 
determined directly) 



 Modified Randles model      La: Rs Cdl/Rct CPE 
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  Impedance does not measure directly a physical phenomenon  
 
  Interpretation of  experimental data - construction of  an 
impedance model by identification procedure.  

 

 Parametric identification approach – confirmation of  
preliminary chosen hypothetical model(s) 
 
 Structural identification approach derives structure +  
parameters form experimental data 



1. Why Impedance 

2. What is impedance 

3. Impedance measurements 

 

4. Presentation of  the experimental data 

5. Interpretation of  the measured data (data 
analysis) 

 

 

•   Basic Working Hypotheses 
 
 
 
 
•   Impedance elements 
•   Simple models 
•   Identification 



STEP I   Algorithm of one impedance experiment 

 

 Organization of  the 
experiment & measurement 
 Monitoring, data pre- 
processing 
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STEP II 

 
DATA 

ANALYSIS 
    Model Identification 

    Parametric Identification 
Approach 
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  Choice of  a working hypothesis presented by one or few 
models   
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models   
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]Im,Re,.[.ˆ
MiiiM SIdentParP ω=  Parametric identification  

P(S) = R1, R2, C 
(estimated values) 

P(S) = R1, R2, 
C1, R3, C2 

P(S) = R1, R2, CPE 

  Model validation 



  Model simulation: 
 
  Selection of  criterion for proximity 
 
 
  Analysis of  the residuals  (adequacy) 

]ˆ,,.[)(ˆ
MMi PSSimuliZ ωω =

)ˆ()( iiii ZZi −= Φω∆

)(lg)( ffii =ω∆

  Model validation 

  Selection of  the best model 



   Selection of  the Best Model 
 Evaluation of  the distance for  “best fit “  

∑ ⇒ min2
i∆

The most frequently applied algorithm for parametric identification 
  

Complex Nonlinear Least Squires Method (CNLS).  
 
                   Professional  software tools are available for it !!! 
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 GENERAL Approaches  for tailoring the materials properties 

      (conductivity) 

         Optimization of  the composition  (bulk properties) 
 
 
 
 
 
  Optimization of  the microstructure  (grain boundary properties) 
 

 

  
 ideal stoichiometric structure 
 defect structure 
 additional phases 
composites 
 
 
 grain size 
 inter-granular or intra-granular pores 
 additional phases at the grain 
boundaries 
 architecture of  ordered internal 
structures 
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 Voigt’s Structure – consists of  meshes with impedances Zk 
(iω), connected in series. 

 )i(Z)i(Z k ωω ∑=

 The phenomena modeled by each 
mesh start instantaneously.  
 The flowing current is equal for all 
meshes.  
 The rates depend on their own time-
constants. 

R1 

C1 

R2 

C2 

  

Voigt’s model structure is applied for  impedance description of  solid 
state samples 
 

 EIS Applications in Materials Science 
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 Conductivity  characterization: bulk;   grain boundaries  

Zirconia ceramics: Impedance Spectroscopy, Emphasizing Solid Materials 
and Systems, ed. J.R. Macdonald, 1987, p.219 

3% Y2O3 

6% Y2O3 



  Deviations in real systems  from the Idealized Model 
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 BULK - second phase (including pores); vacancy ordered 
structures; magnetic or electric domains;  
 G.B. – accumulation or depletion of  space charge; impurities; 
defects; second phase; 
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Influence of  microstructure  
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  Basic (idealized)  Model - interpretation 

Higher  temperatures 

    As component (electrode 
reaction) 

 

Characterization the functionality 
    of  the material in a process (in   

combination with other 
materials) 
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 Assumption: 

  Charge transfer approach (adopted from liquid 
Electrochemistry – idealized description 

Idealized model 

 EIS Applications in Materials Science 



P. Carpanese, A. Barbucci, G. Cerisola et all, 
Bulg. Chem. Communic. 38 (2006) 186 
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Real data 

  Charge transfer approach (adopted from liquid 
Electrochemistry – idealized description 

  Electrode reaction description 

 Assumption: 

• Electrochemical (charge transfer) 
reaction takes place at the three 
phase boundary    (metal-
electrolyte-gas) 

• Break down of  the electrode 
reactions on individual steps 
involving : 2 D charge transfer, 
different diffusions, adsorption etc. 

 

 

+ ..... 



SUMMARY (1) 

What can impedance give for SOFC studies 
 
•  Materials  and components:  

– Electrolyte: Rb. Rg.b., optimization of  microstructure 
– Electrodes: polarization resistance Rp. quality of  interface,  rate limiting 

stage,  quality of  deposition;    
•  Cells: performance; separation of  components influence,  influence  
        of  water behaviour;  gas flow, tempererature 



                SUMMARY (2) 

What else can  impedance give : 
 

•  PLEASURE and  
 

• RELAXATION 
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Mattice:        Dance 2 
Impedance: Armico iron/organic coating  
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